Harihara Baskaran

Department Chair, Chemical Engineering Professor, Chemical Engineering
Understands and solves problems in biology and medicine using transport principles
Office: 111C A.W. Smith Phone Number: (216) 368-1029 Email: hari@case.edu

Education

Ph.D., Chemical Engineering, The Pennsylvania State University, 1997

Professional Leadership and Service

American Institute of Chemical Engineers

Publications

Chariou, P., Dogan, A., Welsh, A., Saidel, G. M., Baskaran, H. M., & Steinmetz, N. M. (2019). Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 14 (7), 712-718.
Chariou, P., Dogan, A., Welsh, A., Saidel, G. M., Baskaran, H. M., & Steinmetz, N. M. (2019). Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 14 (7), 712-718.
Wang, K., Egelhoff, T., Caplan, A., Welter, J., & Baskaran, H. (2018). ROCK Inhibition Promotes the Development of Chondrogenic Tissue by Improved Mass Transport. Tissue Engineering, 24 (15-16), 1218-1227.
Zhong, Y., Motavalli, M., Wang, K., Caplan, A., Welter, J., & Baskaran, H. (2018). Dynamics of Intrinsic Glucose Uptake Kinetics in Human Mesenchymal Stem Cells During Chondrogenesis. Annals of Biomedical Engineering.
Wang, K., Kwan, E., Aris, K., Egelhoff, T., Caplan, A., Welter, J., & Baskaran, H. (2017). The effect of RhoA/ROCK signaling inhibition on the development of hMSC-based chondrogenic tissue. Osteoarthritis and Cartilage, 25 , S77-S78.
Zhong, Y., Pontius, W., Wang, K., Motavalli, S., Caplan, A., Welter, J., & Baskaran, H. (2017). Glucose metabolism during mesenchymal stem cell chondrogenesis. Osteoarthritis and Cartilage, 25 , S385-S386.
Wang, K., Kwan, E., Aris, K., Egelhoff, T., Caplan, A., Welter, J., & Baskaran, H. (2017). The effect of RhoA/ROCK signaling inhibition on the development of hMSC-based chondrogenic tissue. Osteoarthritis and Cartilage, 25 , S26-S27.
Chou, C., Rivera, A., Williams, V., Welter, J., Mansour, J., Drazba, J., Sakai, T., & Baskaran, H. (2017). Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage. Acta Biomaterialia, 60 , 210-219.
Zhong, Y., Pontius, W., Caplan, A., Welter, J., & Baskaran, H. (2016). Use glucose metabolism as a predictive tool to study chondrogenesis in human mesenchymal stem cells. Osteoarthritis and Cartilage [10634584], 24 , S168-S169.
Chung, C., Heebner, J., Baskaran, H., Welter, J., & Mansour, J. M. (2015). Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage.. Annals of biomedical engineering, 43 (12), 2991-3003.
Baskaran, H. (2015). Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. Journal of Cell Biology, 210 , 583-594.
Thomas, D., Yenepalli, A., Denais, C., Rape, A., Beach, JR, A., Wang, Y., Schiemann, W., Baskaran, H., Lammerding, J., & Egelhoff, T. (2015). Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. , 210 (4), 583-594.
Rivera, A., & Baskaran, H. (2015). The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress. , 6 (3), 330-346.
Baskaran, H. (2013). Micrometer Scale Guidance of Mesenchymal Stem Cells to Form Structurally Oriented Cartilage Extracellular Matrix. .
Peiris, P., Toy, R., Doolittle, E., Pansky, J., Abramowski, A., Tam, M., Vicente, P., Tran, E., Hayden, E., Camann, A., Mayers, B., Erokwu, B., Berman, Z., Wilson, D. L., Baskaran, H. L., Flask, C. L., Keri, R. L., & Karathanasis, E. L. (2012). Imaging metastasis using an integrin-targeting chain-shaped nanoparticle.. ACS nano, 6 (10), 8783-95.
Peiris, P., Toy, R., Doolittle, E., Pansky, J., Abramowski, A., Tam, M., Vicente, P., Tran, E., Hayden, E., Camann, A., Mayers, B., Erokwu, B., Berman, Z., Wilson, D. L., Baskaran, H. L., Flask, C. L., Keri, R. L., & Karathanasis, E. L. (2012). Imaging metastasis using an integrin-targeting chain-shaped nanoparticle.. ACS nano, 6 (10), 8783-95.
Shaikh, S., Birdi, A., Qutubuddin, S., Lakatosh, E., & Baskaran, H. (2007). Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites.. Annals of biomedical engineering, 35 (12), 2130-7.